
Configuring and Launching CRL 11-1

Chapter 11: Configuring and Launching CRL

This chapter describes the configuration tasks that are necessary for running
the application, for customizing the desktop environment to your experiment,
and for enabling particular features of CRL. It also discusses invoking the
application.

11.1 Editing the Properties File

11.1.1 The Bare Minimum

Before you can even invoke an installed instance of CRL, you must set a
crucial subset of the parameters in the properties file. The properties file,
LogbookConfigParms.properties, is stored in the
LogBook_admin subdirectory1.

In this section we just list the properties you need to edit. Look up each
property as needed in Chapter 15: CRL’s Java Properties to get information
about setting its value.

Before editing the properties file, you must have information about your
directory structure and your database. You’re welcome to set all the
parameters at this point, but here’s the bare minimum that MUST be set:

Logbook.file_location.entry_directory

Logbook.database.enabled

Logbook.database.vendor

Logbook.database.version

Logbook.database.driver

If the connection URL (location of the database) is not of the form
<protocol>//<machine_name>/<database>?user=<username
>&password=<password>, then set the parameter:

Logbook.database.connection_url

1. In the CRL 1_7_04 release for Windows, the default CRL top level directory on Win-
dows is CRL\CRLadmin\config. The LogBook_admin subdirectory
should be under this.

11-2 Configuring and Launching CRL

If you set the above parameter, ignore the following five. Else, ignore above
parameter and instead set the following parameters:

Logbook.database.protocol

Logbook.database.server

Logbook.database.dbms_name

Logbook.database.username

Logbook.database.password

Once you’ve made the initial edits to the properties file, launch the CRL
application (see section 11.3 Launching the CRL Application) to see what it
looks like and how it works. It comes with a sample configuration. Looking it
over and trying things out will help you visualize and plan the desktop
configuration for your experiment. Then go to section 11.4 Configuring Your
Desktop.

11.1.2 Further Edits

After you become somewhat familiar with the desktop and operation of CRL,
come back to the properties file and set additional parameters as you are ready
to enable or change various features. Refer to Chapter 15: CRL’s Java
Properties for help on setting values for these parameters.

11.2 Configuring CRL to Use a Preinstalled
JVM (Optional)

The JVM is included as part of the CRL release. We have extended the
functionality of the JVM we ship in order to enable the IPen® functionality in
the CRL. You can use another installation of the JVM (either JDK or JRE1,
v1.4.1 or higher), but to have IPen® functionality, you need to copy several
files from the shipped JVM to the one you plan to use. You also need to
modify the CRL invocation script so that it runs your JVM.

11.2.1 Files to Copy

All the files you’ll need to copy from the shipped JVM reside under
$CRL_DIR/jdk<x.y>/jre/, where <x.y> refers to the version. First
cd to that directory:

1. The JDK stands for Java Development Kit. The JRE stands for Java Runtime Environ-
ment. Both include a Java Virtual Machine (JVM) JVM. The JDK is a superset of the
JRE, and adds files that the developer needs in order to develop Java programs, not just
run them.

Configuring and Launching CRL 11-3

% cd $CRL_DIR/jdk<x.y>/jre/

Now start the copies:

1) Copy the files comm.jar and jcl.jar from
$CRL_DIR/jdk<x.y>/jre/lib/ext/ to the jre/lib/ext/
directory under your JVM, e.g.,:

% cp lib/ext/comm.jar \
/path/to/your/java/jdk<x.y>/jre/lib/ext/

% cp lib/ext/jcl.jar \
/path/to/your/java/jdk<x.y>/jre/lib/ext/

2) Copy the file javax.comm.properties from
$CRL_DIR/jdk<x.y>/jre/lib/ to the jre/lib/ directory
under your JVM, e.g.,:

% cp lib/javax.comm.properties \
/path/to/your/java/jdk<x.y>/jre/lib/

3) Copy the files libSerial.so and libParall.so from
$CRL_DIR/jdk<x.y>/jre/lib/i386 to the jre/lib/i386
directory under your JVM and change mode to 777, e.g.,:

% cp lib/i386/libSerial.so \
/path/to/your/java/jdk<x.y>/jre/lib/i386

% cp lib/i386/libParall.so \
/path/to/your/java/jdk<x.y>/jre/lib/i386

% cd /path/to/your/java/jdk<x.y>/jre/lib/i386

% chmod 777 libSerial.so

% chmod 777 libParall.so

11.2.2 Sample CRL Invocation Script

A simplified script for CRL is listed here (the last line has been abbreviated,
and is described below; <x.y> is used in place of the JRE version.) It is
included for your information:

#!/bin/bash

INSTALLDIR=$CRL_DIR

VERSION=V<x_y>

JARLIB=$INSTALLDIR/LogBook$VERSION/

LOGBOOK_ADMIN_DIR=$HOME/.crl

echo Running Logbook version $VERSION in $INSTALLDIR

JARS="$JARLIB/LogBook_logentry$VERSION.jar:$JARLIB/LogBook_xmlbeans$VERSION.

jar:$JARLIB/LogBook_xmldatatypes$VERSION.jar"

MAIN_JAR=$JARLIB/LogBook$VERSION.jar

COMM_JAR=$CRL_DIR/jre<x.y>/lib/ext/comm.jar

ALL_JARS=$JARS:$MAIN_JAR:$COMM_JAR

11-4 Configuring and Launching CRL

JVM = $CRL_DIR/jre<x.y>/bin/java

$JVM <options> -classpath $ALL_JARS logbook/LogBook $LOGBOOK_ADMIN_DIR

The last line of the script is the command that invokes the JVM (and thereby,
CRL). The five strings on the command line are the following items:

$JVM the path to the JVM installation

<options> various options to JVM

-classpath $ALL_JARS

the last option to JVM; this specifies a search path for
application classes and resources, which the CRL
developers have put into various jar files. (A java jar
file is an archive of many java classes put into one file.)

logbook/LogBook

the java class to execute

$LOGBOOK_ADMIN_DIR

a parameter which tells CRL the parent directory of the
directory containing CRL’s properties file

11.2.3 Modify the CRL Invocation Script

The second-to-last line of the script is an environment variable definition that
sets the path to the JVM that gets invoked:

JVM = $CRL_DIR/jre<x.y>/bin/java

It’s easiest to simply change the JVM environment variable definition and
leave the command line (the last line) unchanged. This will make the
command run your JVM installation rather than the one shipped with CRL.

11.3 Launching the CRL Application

Before running CRL, you must perform at least a minimum of configuration
and the database must be running. VERY IMPORTANTLY, YOU MUST
EDIT THE PROPERTIES FILE! See section 11.1 Editing the Properties File.
CRL may not even run if you neglect this step. And if it does run, it most
likely will not be set up the way you want it.

Configuring and Launching CRL 11-5

11.3.1 Once you’re ready for launch...

An “FYI”: The command you use to launch the application actually runs a
java command (usually as part of a script) which sets the java class path,
optionally defines variable names for use in the properties file, and lastly
furnishes the CRL top level directory path (as set in the installation) to the
application.

11.3.2 Windows (Local and AFS Installations)

On Windows, you will have a desktop icon for CRL. Just double-click it to
run the program.

11.3.3 Linux (Local UPD Installation)

Run setup to add the directory containing the CRL script to your $PATH,
then run the crl command:

% setup crl V1_<x_y> [-f Linux]

% crl

11.3.4 Linux (Local Tar File Installation)

For a Linux tar file installation, manually add the directory containing the
CRL script to your $PATH, then run the program by entering the script name:

% <crlscriptname>

11.3.5 Linux (AFS Installation)

Running the CRL installation in Fermilab’s AFS product area assumes that the
setup described in section 10.6 Preparing to Use CRL in Fermilab’s AFS
Products Area has been done. Your machine must be running AFS. There
should be a script on your local machine that runs CRL such that it points to
local configuration information.

If you are logged into an fnalu Linux node (for example, flxi02.fnal.gov), or
any Linux node that has a UPS database setup for the AFS products area,
launching the application should be as simple as:

 % setup crl V<x_y> [-f Linux]

 % <local_crl_scriptname>

If you are on a Linux system with no UPS database, you may need to set an
environment variable that points to the product in AFS space, for example:

11-6 Configuring and Launching CRL

 % setenv CRL_DIR /afs/fnal.gov/ups/crl/V<x_y>/Linux

and then run the local script that invokes CRL:

 % <local_crl_scriptname>

11.4 Configuring Your Desktop

To configure the various elements of the desktop, you need to edit the
LogBookConfig.xml configuration file. There are also XML
configuration files for inquiries and forms.

Never edit the DTD file that goes with an XML file! The CRL application
code depends on the DTD structure.

LogBookConfig.xml is found in the LogBook_admin directory. All
the XML you need to know in order to understand and edit the configuration
file can be found in Chapter 16: Introduction to XML and DTD Files. The
files themselves are described in Chapter 17: The CRL Desktop Configuration
File.

11.4.1 Define Keywords

Keywords may not be the first thing you want to configure, but we place this
topic first in this section because you can attach keywords to many of the items
that follow. If you read about keywords first, then at least you’ll know how
and where to go back and enter them.

Keywords can be configured to link to logbook entries in order to provide an
additional dimension for querying the database when attempting to later
identify and retrieve particular entries. Keywords are stored in UPPERCASE.

Each input container may have its own set of default, “attachable” keywords
pertaining to the container topic. The keywords may be configured for the
topic itself, or for a menu/submenu that leads to it. Any or all of these
keywords may be configured to link automatically to each entry in the
container. You can configure each automatically linked keyword such that it is
removable, or not.

Similarly, each data type may have keywords associated with it. In this case,
every logbook entry of a given data type inserted into a given input container
would have the same set of default keywords, and users can choose from
among them.

A desktop page may also have keywords configured for it; these keywords
would be available for all containers, and for all data types on the given page.
(These are only meaningful on entry input pages.)

Configuring and Launching CRL 11-7

The CRL application as a whole may also have keywords configured; these
keywords would be available to the user for all containers, and for all data
types on all pages.

See section 17.2.3 Keyword for configuration information.

11.4.2 Define a new Desktop Page (Data Entry or Report)

A desktop page is a work space in CRL. There may be several pages to your
desktop; pages are configurable by experiment. Only one page is visible and
active at a time.

A desktop page may be configured for data entry and manipulation, or for
searching/viewing/manipulating archived entries only. The former is typically
called a "data entry page" or "entry-input page", and the latter a "report page".
All pages provide one or more menus for the user, and each data entry page
also provides a data-entry toolbar.

• The element type EntryInputPage is used to define each of the
desktop pages on which logbook entries can be made; see section 17.2.6
EntryInputPage for information on constructing the XML code.

• The element type Page is used to define each of the non-data-input
desktop pages in the application, e.g., a page for reports only; see section
17.2.5 Page for information on constructing the XML code.

11.4.3 Define a Menu and/or Submenu on a Desktop Page

Each desktop page has a set of menu headings lined up horizontally underneath
the page title. These are pull-down menus. These pull-down menus may
cascade several levels in order to allow precise categorization of entries or
reports.

Menus may be defined for both types of pages, data entry and report (see
section 11.4.2 Define a new Desktop Page (Data Entry or Report). On entry
input pages, menus are intended to represent general logbook entry categories.
You can also include report menus on an entry-input page, but not vice-versa.
Report menus represent general reporting categories, e.g., daily report.

Make the menu names and options descriptive!

The menu headings and all the sublevels of categorization except the final one
correspond to logbook entry categories. The final level of menu categorization
(i.e., an option on the lowest-level submenu, or on the menu itself in the
absence of submenus) is considered the topic. A container is associated with a
topic.

• The element type Menu is used to define a top level menu on a desktop
page; see section 17.2.7 Menu and SubMenu.

11-8 Configuring and Launching CRL

• The element type Submenu is used to define each of the submenus
coming off a menu or a higher-level submenu; see section 17.2.7 Menu
and SubMenu.

• The element type Topic is used to define each of the menu options on
the lowest-level submenu, or on the menu itself in the absence of
submenus; see section 17.2.8 Topic.

11.4.4 Define a ToolBar with ToolButtons for Data Entry
Types

You must configure a data entry toolbar for each desktop page that allows
logbook data entry. A toolbar must therefore appear in the declaration of each
EntryInputPage element. It will display vertically down the right-hand
side of the page.

A toolbar must include at least one toolbutton for each logbook entry type that
you want to make available on the associated page (e.g., text, plain text,
execute command, application output file, form(s), etc.).

The element type ToolBar is used to define a toolbar on an entry input
desktop page and the element type ToolButton is used to define a button
on the toolbar. The images that come with the default configuration are
included in the CRL jar file. See section 17.2.9 ToolBar and ToolButton for
information on constructing the XML code.

Creating New Toolbutton Images

You can create additional images for toolbuttons. Toolbuttons may be graphic
images (.gif files) or plain text. We recommend .gif files because they
look nicer. First make sure you’ve got a directory to contain these images. It
must be located under the same directory that contains the Logbook_admin
directory, and may be called anything (the default is
images/entryinputpages). The template file Button.gif is
provided in this default directory; edit it to make other buttons that match the
default ones. Include the whole path in the XML configuration file when
pointing to one of these image files.

11.5 Creating Configuration Files for Forms

CRL comes with some ready-made forms that you can use as is, modify, or
delete, as you like. You can also create new forms. Each form entry type you
add to your CRL installation has its own XML form definition file. The
form.dtd file and the XML form definition files must be located in a

Configuring and Launching CRL 11-9

directory defined by the
Logbook.file_location.forms_directory parameter in the
Properties file (described in Chapter 15: CRL’s Java Properties).

The XML elements allowed in a form definition file are listed in section 18.1
Form Definition Files, along with examples.1 To refresh your memory on
XML elements and attributes, see section 16.3 Element Types and Attributes in
the DTD File.

11.5.1 Create/Modify the XML Form Definition Files

There are several things you need to know up front about creating new forms:

• For each new form, a corresponding data entry toolbutton must be added
to the toolbar. See section 11.4.4 Define a ToolBar with ToolButtons for
Data Entry Types.

• The XML tags are not case-sensitive.

• You can create forms with text areas, radio buttons, check boxes, selects,
tables and lists. You can combine these elements on the same line, if you
like.

• You can group elements on a line so that they are arranged more
attractively when viewed in HTML on the web (appearance in CRL
container is not affected). See section 18.1.7 Sample Lines with Field
Placement Grouping.

• With the exceptions of <Form> and <RepeatBlock>, all form
elements (tags) must be contained within a <Line> ... </Line>
tag; further, a <Line> element must not contain either of the
above-mentioned element types.

• The entire form and/or individual form elements can be aligned center
(the default), right, or left. Both the <Form> and <Line> elements
support the align attribute.

• Forms can be configured such that the entry gets automatically emailed
(in HTML format) to one or more individual addresses and/or to one or
more mail lists at the time it is archived (see section 11.5.2 Enable
Automatic Electronic Mailing of Form Entries).

• You can set up a table in your form definition file by specifying the
columns and rows of data. See section 11.5.3 Include Tables in a Form.
On a form entry containing a table, two buttons are displayed for the user:
ADD NEW ROW and DELETE A SELECTED ROW. These buttons are
associated with the table portion of the entry, and appear above it.

1. Unlike the other XML configuration files in CRL, the form definition files are not
strictly governed by a DTD file; however the file is referenced and must be present.

11-10 Configuring and Launching CRL

• You can have your form run a program, the output of which will appear in
a text area on the form when a user creates an entry using this form.

• Forms may contain embedded forms via the element <insertform>.
This enables you to create end forms in which some fields are reloadable
and others are not. This technique is described in section 11.5.4 Create
Forms with Selected Reloadable Fields.

• Forms may contain "repeat blocks". From the user’s point of view a
repeat block is a portion of the form entry that is demarcated and
displayed along with a REPEAT button, which when clicked causes that
portion of the form to be duplicated in the entry. From the administrator’s
point of view, a repeat block is a portion of the form enclosed between
<REPEATBLOCK> ...</REPEATBLOCK>, intended for said purpose.

 Repeat blocks may contain one or more <LINE>...</LINE>
elements only; they cannot contain the <insertform> element.

11.5.2 Enable Automatic Electronic Mailing of Form
Entries

Entries can be sent to email recipients automatically upon archive, or manually
by the user. The latter method applies to all data entry types, and is discussed
in section 4.7 Sending Entries via Email. Automatic mailing applies only to
form entries.

In order to enable automatic electronic mailing of form entries, you need to do
one of the following:

1) create a mail list file (format and location given below) and insert the
filename into the configuration for the toolbutton that corresponds to the
form, or

2) insert a destination email address directly into the configuration for the
toolbutton that corresponds to the form. It must contain the @ symbol.
Optionally, also include a “from” email address and a subject line.

See section 17.2.9 ToolBar and ToolButton for the XML format (there is an
example of this in the sample code given there). If a mail list file exists and is
specified, it will take precedence over email information contained in the CRL
configuration file.

If you wish to create a mailing list for any of your forms, first create a text file
in the directory specified by the parameter
Logbook.file_location.mail_list_directory in the
properties file (Chapter 15: CRL’s Java Properties). The text file can have any
name, but its contents must conform to the format of the following sample file
and to the constraints listed below:

<MAILLIST>

 <TO>user1@fnal.gov</TO>

Configuring and Launching CRL 11-11

 <TO>user2@fnal.gov</TO>

 <TO>userxyz@myuniv.edu</TO>

 <TO>listxyz@myuniv.edu</TO>

 <FROM>user3@fnal.gov</FROM>

 <FROM>listabcd@fnal.gov</FROM>

 <CC>powersthatbe@fnal.gov</CC>

 <BCC>mefistofele@underworld.org</BCC>

 <SUBJECT>Muon chambers update $D $T</SUBJECT>

</MAILLIST>

Your mail list file may contain any number of any of these elements
(<TO>...</TO>, <FROM>...</FROM>, <CC>...</CC>, and
<BCC>...</BCC>) in any order. Each element can contain only one email
address. An email address may be an individual address or a mailing list.

The file may also contain one subject element
(<SUBJECT>...</SUBJECT>), in any position with respect to the other
elements. The macros $D and $T may be used in the subject line; they get
replaced by the current date and time, respectively, when the form is archived
and the email is sent.

11.5.3 Include Tables in a Form

You can set up a table in your form definition file by specifying the columns
and rows of data. The data types that can be inserted into cells of a table
include:

DateAndTime current date and/or time

CheckBox boolean

Integer whole number

Double floating point number

Select pull-down, editable or noneditable selection box

Field text

The syntax for setting up a table within a form is as follows (where
datatype_<n> refers to one of the above data types):

<Line>

 <Table>

 <ColumnLabel name="title of column1">

 <datatype_1 ... />

 </ColumnLabel>

 <ColumnLabel name="title of column2">

 <datatype_2 ... />

 </ColumnLabel>

 ...

 </Table>

11-12 Configuring and Launching CRL

</Line>

For example:
<Line>

 <Table>

 <ColumnLabel name="Date">

 <DateAndTime Date="yes" Time="no" />

 </ColumnLabel>

 <ColumnLabel name="XYZ Status">

 <CheckBox name="XYZ" checked="on" />

 </ColumnLabel>

 <ColumnLabel name="Integer Value">

 <Integer />

 </ColumnLabel>

 <ColumnLabel name="Floating Value">

 <Double />

 </ColumnLabel>

 <ColumnLabel name="Who?">

 <Select editable="yes">

 <Option name="me">

 <Option name="you">

 </Select>

 </ColumnLabel>

 <ColumnLabel name="some text">

 <Field columns="30" rows="1" />

 </ColumnLabel>

 </Table>

</Line>

There is more information on constructing the XML code and a more detailed
example in section 18.1 Form Definition Files.

11.5.4 Create Forms with Selected Reloadable Fields

What?

You can create a form that is a composite of its own elements and of one or
more other forms. The component forms may in turn be composites of yet
other forms, ad infinitum. You can configure component forms to reload

Configuring and Launching CRL 11-13

previously saved data or not. You can configure component forms such that
their data get saved to a reload area each time an entry of the end form type is
archived, or such that the data are not saved each time.

Why?

Why would you want to embed forms within forms? This technique allows
you to collect all the information your experiment needs in the entry while
minimizing data input by the user. You can create forms that are simple for the
user with some fields initially filled in with new data (e.g., current date and
time), other fields containing previously saved information (either a constant
value or data from the previous entry of the form), and still other fields blank.
All the fields remain editable.

How?

To embed one (source) form inside another (target), you create a separate XML
form definition file for each, then in the target file, use the <insertform>
element (in place of a <Line> element), e.g.,:

<insertform

 name="source_form.xml"

 reload="false"

 byReference="false"

/>

The name attribute is the source form definition filename. The reload and
byReference attributes both take values of true or false. If reload="true", then
the source form is inserted into the target with reloaded data; if "false", it’s
inserted blank. We’ll discuss byReference further on; its function comes into
play when the end form is either archived or checkpointed.

The <insertform> element will not work inside a repeat block.

Let’s take an example, illustrated by the schematic below. The XML code and
other details are given in section 18.1.8 Sample Form with Embedded Forms.
Here we discuss the concepts.

11-14 Configuring and Launching CRL

Form A is the end form that the user sees. It is composed of some native
elements (DATE: and SHIFT: line at the top, and the LAST LINE at the bottom)
and two inserted (source) forms, B and E. E is a simple form with native
elements only, whereas B (as a target) contains (source) forms C and D in
addition to some native elements.

Forms C and D are both inserted into B with reload set to true. Form B is
inserted into A with reload="false". Form E is inserted into A with
reload="true". Form A is marked reload="false" (in its definition
file). End result:

• A’s native elements are either blank or filled in with new data (e.g., Date
and Time). (If A were set to reload="true", then user would get a
prompt asking whether to reload or not.)

• B’s native elements are either blank or filled in with new data (e.g., Date
and Time) since reload is false. (An intermediate target form such as B
should always be set to reload="false".)

• The portion of B that is form C gets passed to A as it appears in B, i.e.,
with reloaded data. If there is no previously saved data for one or more of
C’s fields, those fields will be blank.

• The portion of B that is form D gets passed to A as it appears in B, i.e.,
with reloaded data. If there is no previously saved data for one or more of
D’s fields, those fields will be blank.

• The portion of A that is form E contains data from E’s reload file, since
reload is true. If there is no previously saved data for one or more of its
fields, those fields will be blank.

Now the user edits form A. Then user archives the entry, and pulls up a new
one. What will the new form entry display? In this case,
(reload="false" for A) the portions native to A are either new or blank.
The non-native portions depend upon the value of the byReference attribute set
on insert:

Configuring and Launching CRL 11-15

• If byReference="true" for a component (or subcomponent) form
of A, then when A is archived or checkpointed, the data for that
component gets written to a reload file1 in the forms directory,
overwriting any previous instance of the file.

• If byReference="false" for a component (or subcomponent)
form of A, then data from that component is never written to a reload file.

Create Field with Constant Default Value

Say you want the same default value to always appear in a particular field of
your end form. You want the user to be able to change it on any given entry,
but not to overwrite the reload value. To accomplish this, include that field in a
(source) form that gets inserted into the (target) end form (or into one of the
end form’s component forms). Follow the procedure outlined here:

1) In the target form’s definition file, set reload="true" and
byReference="true" upon insertion of source form.

2) Invoke CRL, and create an entry using the end form. Either archive the
entry or allow it to checkpoint, in order to create the necessary reload
files in the forms directory. The field is now initialized.

3) Re-edit the target form definition file, and change byReference to false
(keep reload set to true). The reload file for the source form, and hence
the field’s default value, will never get overwritten now.

Helpful Hints

• All the form definition files should be maintained in the forms directory
as defined in the properties file.

• Typically, you want the end form’s native elements not to be reloadable;
use inserted forms to implement reloadable fields. To do so, set
reload="false" in the end form’s definition file.

• Any time byReference is true, then reload should also be true. Otherwise
the information in the reload file will never get used.

• Within a chain of embedded forms (e.g., C inserted into B inserted into
A), whenever an intermediate source form is inserted into a target form
with reload="true" and there is a copy to reload, the source form’s
inserted forms are ignored; just the latest image of the intermediate source
form is used. So, you should insert forms as reloadable only at the start of
the chain (e.g., C inserted as reloadable into B, B inserted as NOT
reloadable into A).

1. The filename of a reload file is the same as the corresponding form definition file with
RELOAD prepended. For example, a reload file for the form c.xml would be
RELOADc.xml.

11-16 Configuring and Launching CRL

11.6 Enabling Document View plus Thumb-
nail for PS and PDF File Entries

CRL gives you the option to include a PostScript or PDF document (with
extension .ps, .eps, or .pdf) in a LogEntryRoot type entry,
similarly to a ROOT file. It can be configured to create1 and display a
thumbnail image of the document in the entry. The user would click on the
displayed thumbnail to view the entire document in a PS or PDF viewer, in a
separate window. The thumbnail image is saved with the entry.

To enable these features, you must specify values for the following four
properties in the LogbookConfigParams.properties file. See
Chapter 15: CRL’s Java Properties for details on each of these properties:

Logbook.utils.imagemagick

defines the path to ImageMagick’s convert utility which
converts the PS or PDF file to a .gif or .jpg
thumbnail image file

Logbook.utils.psviewer

defines the path to a PostScript viewer which is used to
display the PS file when user clicks the thumbnail

Logbook.utils.pdfviewer

defines the path to the Acrobat PDF viewer which is
used to display the PDF file when user clicks the
thumbnail

Logbook.file_location.temp_directory

defines the directory where the temporary files for the
PostScript /PDF convert utility are stored

Two notes:

• If these parameters are left blank or left out all together, CRL will still
save the PostScript or PDF file and operate fine, but the thumbnail feature
and PS/PDF viewing will not be available.

• All temporary files created in the directory specified by the property
Logbook.file_location.temp_directory upon creation of a
thumbnail are removed upon closure of the PS or PDF viewer application.

1. It’s actually a separate application that creates the thumbnail.

Configuring and Launching CRL 11-17

11.7 Editing the Inquiries Configuration File

The Logbook inquiry XML configuration file governs the fields on which you
can query when using the inquiry feature described in section 8.2 Inquiries.
The DTD and default XML files are listed in section 18.2 The Logbook Inquiry
Configuration File.

Most CRL administrators will have no need to edit these files.

Only edit the XML file if you want to disable/re-enable any of the filters used
for inquiries. The inquiry DTD and XML files must be kept in the directory
defined in the properties file (see Chapter 15: CRL’s Java Properties) by the
parameter:

Logbook.file_location.inquiries_directory

11.8 Configuring Print Queues

There are no issues regarding printing from CRL installed on a Windows OS.

Fermilab flpr queues are not available; if running CRL on Linux, printing
requires the lp print service to be setup. For KDE, see the Computing Division
web page KDE How-To - Using Printers at
http://www-oss.fnal.gov/projects/fermilinux/611/admi
nclass/printers.full.html.

Other Linux windowing systems provide similar interfaces. There are man
pages describing how to do the configuration from the command line using the
lpadmin command.

11.9 Starting the Process Logger Daemon

The Process Logger, described in Chapter 9: Programmer’s Guide to the
Process Logger, is run as a standalone daemon process that monitors specified
TCP ports for input, interprets the input as CRL entries, and creates and logs
the entries. There can be multiple back-to-back messages on a single open
TCP connection and many concurrent TCP connections on any TCP port.
Each experiment must assign and make known the TCP port number(s) for
remote program connections. If your experiment has multiple processes that
will create entries in CRL, you may want to consider running each on a
separate TCP port. The advantage is that you can turn off one process at a time
by simply restarting the daemon without that process’ assigned port.

11-18 Configuring and Launching CRL

The CRL administrator needs to first obtain the Plog software from the CRL
development group (contact crl-dev@fnal.gov). There is no Plog-related
configuration required in the CRL configuration file. Start the Plog daemon at
any time before running a program that sends messages to it. Use the
following command to start it. (We recommend that you create a script that
takes the port number(s) as argument(s), and runs this command.)

% java -jar LogBookProcessLogger.jar <CRL_admin_directory>\
<TCP_port_number> [<additional_TCP_ports>]

The command arguments are defined as follows:

LogBookProcessLogger.jar the executable from which Plog program
is run

<CRL_admin_directory> the path to the directory containing CRL
configuration files and properties file

<TCP_port_number> the TCP port number assigned to Plog

[<additional_TCP_ports>] a space separated list of additional TCP
port numbers assigned to Plog

The command uses the configuration information in the CRL admin directory
to determine the CRL installation in which the new XML entries and their
corresponding HTML web pages are to be stored. At least one port number is
required on the command line.

